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Linear irreversible thermodynamics and coefficient of performance
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Following the recent proposal by Van den Broeck for a heat engine [Phys. Rev. Lett. 95, 190602 (2005)], we
analyze the coefficient of performance of a refrigerator in two working regimes using the tools of linear
irreversible thermodynamics. In particular, one of the analyzed regimes gives a coefficient of performance
which could be considered as the equivalent to the Curzon-Ahlborn efficiency. Also we consider the relation
with the Clausius inequality, and some results for the relevant thermodynamic magnitudes in this formalism are
confronted with those obtained using the finite-time thermodynamics framework.

DOI: 10.1103/PhysRevE.73.057103

In a recent Letter, Van den Broeck addressed the issue of
the efficiency at maximum power for a heat engine and, in
particular, the well-known Curzon-Alhborn efficiency [1]. In
his Letter, Van den Broeck proposes a general derivation
within the realm of linear irreversible thermodynamics
(LIT). This is a salient feature because it opens the possibil-
ity of analyzing nonisothermal heat engines using the LIT
framework, a field up to now almost limited to isothermal
energy converters [2].

The main goal of this work is to extend the proposal of
Van den Broeck [1] to refrigeration cycles and to study the
coefficient of performance (COP) in two different working
regimes. The results for refrigerators in the LIT scheme (to-
gether with those obtained in [1] for heat engines) will also
be faced with predictions of finite-time thermodynamics
(FTT), a formalism widely used in the study and optimiza-
tion of heat devices [3-5].

We start with the analysis of the heat engine depicted in

Fig. 1(a). This device extracts a refrigeration load O from a
cold space at temperature 7 at the cost of an expenditure of
power W. We can write the entropy production S as
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where T is the temperature of the hotter thermal bath. The
definition of the thermodynamic forces and associated fluxes
in LIT is to some extent a matter of convention with the sole
condition that S=J,X,+J,X,=0. Thus, Eq. (1) suggests con-
sidering a driver force X;=F/T, associated with the external
force F performing work with thermodynamically conjugate
variable x and a flux J;=x, so that T,J; X =Fx= W. As driven
force we choose X,=(1/T,—1/T,)<0 with a flux given by
the cooling power J2=Q. With these definitions the COP € is
given by
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Assuming X, to be a constant and by means of the usual
linear relation [6] between forces and fluxes through the di-
rect and cross coupling coefficients L;; (J;=2,L;;X;) we have
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Let us now consider the regime of maximum COP for
fixed X,. Equation (3) presents a maximum when the driver
force is
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FIG. 1. (a) Generic setup of a refrigerator; (b) cascade construc-
tion with a continuum of auxiliary heat baths.
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where ¢ is the usual dimensionless coupling strength
qZ:L%Z/LHLzz with condition —1 <¢g=<+1. The maximum
COP is then found to be
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which ranges between 0 when |g| —0 and the Carnot COP
€c= % = AT—'T when |¢| — 1. According to the LIT formalism
Egs. (4) and (5) are strictly valid when the linear approxima-
tion in AT holds.

The next step is the maximum COP regime beyond the
linear approximation while staying within the LIT frame-
work. Following Van den Broeck [1] we consider the cascade
contruction shown in Fig. 1(b): a continuous set of identical
refrigerators, each working by means of an external power
dW(y) between temperatures 7(y) and T(y+dy) and under
maximum COP conditions with the same coupling strength
q. The whole system is sandwiched between the cold
T,=T(y=0) and hot Ty=T(y=1) bath temperatures. Thus
each refrigerator verifies the conservation of energy

O(y+dy)-0(y)=dW(y) and works with a COP given by
. . dInT(y)
00 1dW(y)=D(g)/L o

lations we have for dW(y)/dy the equation
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Differentiating this equation with respect to y and then inte-

grating with the appropriate boundary condition at y=0 one
obtains the following first-order differential equation:

]. Combining the above two re-
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The power input on the whole system is thus given by
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and the COP becomes finally
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where 7=T/Ty=<1. Equation (10) gives a maximum COP
independent of the prescribed temperature profile. It varies
between the Carnot value €-=17/(1-7) when |¢|=1 (perfect
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FIG. 2. Behaviors of the maximum COP ¢,,,,(7,q) (solid line) in
Eq. (10) and COP under conditions of maximum J,X,,
€nax ]ZXZ(T,q), (broken line) in Eq. (11) for the labeled |g|-values.

coupling) and zero in the absence of any kind of cross cou-
pling, g=0. The evolution of the COP with 7is shown in Fig.
2 for some |g| values. In real mechanical chillers typical 7
values range between 0.92 and 0.98 and the observed COP’s
are about between 2 and 4 [7]. These values are matched by
Eq. (9) for |g| values in the interval 0.9=|g| =0.7.

An interesting point in the LIT formalism concerns with
its versatility. Since in LIT one is free to choose the fluxes
and thermodynamic forces with the sole condition of the
positivity of the entropy production (S=J,X,+J,X,=0) it is
possible to define different figures of merit or optimization
regimes, as happens in FTT [3-5]. Accordingly, both formal-
isms, although quite different in nature, could be used in a
complementary way in order to go deep into the thermody-
namical analysis and optimization of real heat devices.

As an illustrative example consider the optimization
of the magnitude J,X,=Q(1/T,—1/T,) keeping X, fixed. It
is easy to show that under linear conditions the COP at
maximum J,X, is given by €4, 5x,= ec®(q)/2 where
D(q)=¢*/(2—-¢?) is exactly the same factor that appears
when a heat engine is optimized under maximum power out-
put conditions [1]. The cascade construction is similar to the
one presented in Fig. 1(b) and the final result for the COP is
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If above equation is compared with the result obtained by

(1)

€max JZXZ(T’ Q) =

Van den Broeck in [1] 7, w=1-7"9" one should con-
clude that €, ,x,(7.¢) in Eq. (11) plays the same role in
refrigerators that the efficiency at maximum power output in
a heat engine. This is not a mere coincidence since the func-

tion J,X, for a refrigerator is equivalent to J;X xW for a
heat engine, both considered as generic energy converters in
LIT. In particular, for g=1 the function

2 7

€max 1,(T 1) = T 5= T €c (12)
could play the role of a Curzon-Ahlborn COP. It should be
stressed that in the Carnot-like models (see below) of refrig-
erators in FTT with two noninstantaneous isotherms and two
instantaneous adiabats the power input is not an objective
function to be optimized following the Curzon-Ahlborn tech-
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nique and, as a consequence, a bound like that given by Eq.
(12) or Eq. (11) cannot be derived. A number of different
optimization criteria for Carnot-like refrigerators can be
found, for instance, in Refs. [4,8]. In Fig. 2 we show the
behavior of €4, s,x,(7.9) for some |g| values. Note that
when the losses are high enough €,,,(7,9) and €, ,x,(7.¢)
become almost identical, i.e., as expected, the refrigerator
performance does not distinguish between optimized work-
ing regimes.

We stress an important property regarding with the ratio
of heat transfers, which emerges from the ¢ independence of
the cascade construction and from the particular analytical
form of the optimized COPs in Egs. (10) and (11). If we

return to Fig. 1(b) and make QH:Q(y=O)+f§:(l)dW(y) and
0;=0(y=0) we obtain the equality

: 1/D,,,(q)
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where ®,,(q) denotes the ¢ function coming from the se-
lected working regime (wr) with boundary conditions

lim,_,®,,(¢)<1 and lim,_,®,,(g)=0 and where 0, (Op)
stands for the heat transfer absorbed (delivered) by the cyclic
system at temperature T, (T,). The interesting point in Eq.
(13) is that it contains specific information about the losses
of the refrigerator through the optimized working regime and
the coupling strength value ¢. It can be written in terms of
the Clausius inequality as 7/®w@ < 7. Indeed, under maxi-
mum COP conditions [®,,(g)=P(g) in Eq. (5)] and in the
limit |¢|— 1 Eq. (13) becomes the Clausius equality, but un-
der any other different conditions the term 7'/®w(9 quantifies
the losses of the refrigerator due to the specific irreversibili-
ties involved both in the working regime and in the concrete
value of the coupling. For instance, at maximum J,X, con-

ditions we have that 7/®@ < 7. Similar results hold for a heat

. . QL T, Pwr(Q)
engine. In this case we have that (—| = T , where
Oulwr 0/ wr

p..»(q) denotes the g function specifying the optimum work-
ing regime, and the Clausius inequality reads as 7% = 7. In
the maximum efficiency regime, where it is easy to prove
that p,,(q) = ppax ,(0)=P(g), and in the limit |g|—1 the
Clausius equality is recovered.

Independently of any concrete optimized working regime
like those above analyzed for refrigerators or the one re-
ported by Van den Broeck [1] for the efficiency at maximum
power in a heat engine, it is interesting to face the predicted
results for the relevant thermodynamic magnitudes in LIT
with those coming from the FTT formalism. Although in the
context of FTT there are many different treatments of heat
devices based on a variety of different constraints (see, for
instance, Refs. [3—5] for an overview) we will focus here on
the so-called Carnot-type models. They are widely used in
FTT because, in spite of their relative analytical simplicity,
are able to account for the main irreversibilities that usually
arise in real heat devices: finite-rate heat transfer between the
working fluid and the external heat sources, internal dissipa-
tion of the working fluid, and heat leak between reservoirs.
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FIG. 3. (Color online) (a) Three-dimensional (3D) plot of the
COP € given by Eq. (3) in terms of X, and g for e,=T,/(Ty—T))
=5; (b) 3D plot of the cooling power Q=/J, in terms of X; and ¢;
(c) parametric plot of 1/€ versus 1/ Q for the labeled lg| values. In
all cases Li;=Ly=1 and X,=-2. All magnitudes are expressed in
arbitrary units.

Well-known characteristics of these irreversible Carnot-type
models are the following: a loop-shaped power versus effi-
ciency curve for a heat engine [9] and a performance curve
of (1/coefficient of performance) against (1/ cooling rate) for
a refrigerator where the high cooling rate region is a decreas-
ing function dominated by the external heat transfer losses
and the low cooling rate region is an increasing function
dominated by internal losses and heat leaks [10]. A particular
limit of these models is the so-called endoreversible models
where heat leaks are absent. In such a case the power versus
efficiency curve of the heat engine becomes an open curve
[9] and the (1/coefficient of performance) against (1/cooling
rate) curve of the refrigerator becomes a monotonically de-
creasing function at all cooling rate values [10].

Figure 3(a) shows the behavior of the COP versus our
independent variable X, at constant X, for different |g| val-
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ues. If the coupling is perfect (|g|=1) the COP decreases
monotonically with X; from its maximum Carnot value to
zero, while as ¢ moves to 0 the COP shows a clear maximum

value for some X; value. The cooling power Q=J2:L12X1
+L,,X, shows [see Fig. 3(b)], a monotonically increasing
behavior with X; which progressively decreases as g —0.

The parametric plot 1/€ versus 1/Q is shown in Fig. 3(c). At
|g]=1 a hyperboliclike behavior is observed, typical of the
endoreversible models of a refrigerator in FTT just account-
ing for external, finite-time heat transfer losses [7,10]. As |g]|
decreases the contribution of the smaller cooling powers pro-
gressively transforms in a monotonic increasing, in agree-
ment with FTT models incorporating additional internal
losses [7,10]. It should be mentioned that this behavior, al-
though in qualitative agreement with results of real mechani-
cal chillers, does not reproduce the true evolution of the ob-
served cooling powers under maximum COP conditions [7].

Anyway, the above results suggest that the limit |¢| — 1 in
the LIT framework is somehow reminiscent of the endor-
eversible hypothesis in FTT while results for smaller cou-
plings |g| <1 seem to reproduce, qualitatively at least, the
predictions of the irreversible models. These results for re-
frigeration devices also apply for a heat engine. From the
results reported by Van den Broeck [1], it is easy to show
(see Fig. 4) that the parametric plot efficiency versus power
output is an open curve typical of the endoreversible Carnot-
like models at |g| =1, while for |¢g| <1 the parametric plot
becomes loop shaped where maximum efficiency and maxi-
mum power are close but noncoincident points, in agreement
with results of real heat engines and with predictions of irre-
versible models in FTT [9].

In summary, we have extended the formalism of Van den
Broeck to account for a refrigerator device in the LIT frame-
work and obtained some bounds for the COP in terms of the
thermal bath temperatures and a concrete function specifying
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FIG. 4. Parametric plot of the efficiency 7 versus power output
W for the motor model by Van den Broeck with the labeled |g|
values and a maximum Carnot value of 0.6, L;;=L,=1, and
X,=2. All magnitudes are expressed in arbitrary units.

the selected working regime in such a way that it allows for
an easy evaluation of the Clausius inequality. In particular
one of the studied working regime gives a COP that could be
considered as the equivalent to the Curzon-Alhborn effi-
ciency. The comparison of the reported results and those
coming from FTT shows that in LIT a perfect coupling
between fluxes and forces (|¢|=1) quantitatively reproduces
an endoreversible FTT model where all irreversibilities are
due to external heat transfers, while nonideal couplings
(lg| <1) reproduce behaviors of the nonendoreversible FTT
models with additional internal losses.
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